Las plantas

jueves, 31 de marzo de 2011

¿Sabes por qué son importantes las plantas?

¿Cuantas partes tienen las plantas?
Las plantas , como el resto de seres vivos, poseen un organismo vivo que puede ser dividido en tres partes principales: raíz, tallo y hojas.
Las plantas pueden vivir en una variedad de entornos: desde los desiertos hasta los océanos.
Si pinchas sobre la imagen de la planta tendrás una presentación con todo lo que necesitas saber sobre las plantas.
Fíjate cómo en la presentación se insiste en que hay plantas con flor y plantas sin flor y hay un apartado sobre los hongos (que ni son animales, ni son plantas).



¿ Qué son la raíces?

La raíz es el órgano que se encuentra debajo de la tierra. Su función es sujetar la planta y absorber las sales minerales y el agua del suelo.
Toda raíz consta de raíz principal que es la parte más gruesa. Las raíces secundarias salen de la raíz principal y no son tan gruesas como aquella. La caliptra o cofia es la protección con la que terminan las raíces. Sirve para que las raíces puedan perforar el suelo. Los pelos absorbentes son unos filamentos diminutos que recubren las raíces y tienen la función de absorber el agua y las sales minerales del suelo.
Existen diferentes formas de raíces según su forma, su función o el lugar en donde se desarrollen. Por ejemplo, las raíces napiformes, como la de la zanahoria, presentan una raíz principal muy engrosada por acumulación de substancias de reserva; las raíces acuáticas de las lentejas de agua absorben directamente las substancias del agua.
Algunas raíces son aprovechadas por el hombre como alimento, especialmente aquellas que acumulan reservas como las raíces de las zanahorias o los rábanos. Otras raíces se consumen por su sabor o por sus propiedades medicinales, como la raíz de la regaliz.
¿ Qué son los tallos?
El tallo es la parte de la planta opuesta a la raíz. Generalmente, crece en sentido vertical hacia la luz del sol. A partir del tallo, se desarrollan las ramas en donde nacerán las hojas, las flores y los frutos. Por el interior del tallo circula la savia, constituida por la mezcla de agua y minerales que la planta absorbe del suelo.
El tallo principal es el tallo más importante de la planta. De él comienzan a salir los tallos secundarios. Los nudos son unos engrosamientos situados en los tallos . A su altura es donde nacen las hojas. Las yemas tienen la función de realizar el crecimiento de los tallos.
Según la mayor o menor dureza de los tallos, los clasificamos en leñosos o herbáceos. Las hierbas constituyen los típicos vegetales con tallos herbáceos, que son aquellos que se caracterizan por ser blandos , flexibles y de color verde. Por ejemplo, La amapola, o la manzanilla poseen tallos herbáceos.
Los árboles o los arbustos tienen los tallos más duros y suelen ser más grandes que las hierbas. Son ejemplos de árboles el pino o el cerezo. El romero es un arbusto típico.
Algunos tallos de color verde son capaces de realizar la función de la fotosíntesis. Otros tallos se han transformado y son capaces de almacenar substancias de reserva. Muchos de estos tallos son comestibles y los utiliza el hombre para alimentarse tal como, por ejemplo, las patatas . Hay tallos que son capaces de almacenar mucha agua y resistir mucho tiempo de sequía, tal como ocurre con los cactus.
¿ Qué son las hojas?
La hoja es una de las partes más importantes de los vegetales puesto que es la parte de la planta que está encargada de realizar la fotosíntesis , así como la respiración y la transpiración vegetal. Una hoja consta del limbo que es la parte ancha de la hoja. En el limbo se encuentran una serie de canales llamados nervios por donde circula la savia. La parte superior de la hoja la llamamos haz y a la parte inferior envés. El borde o extremo de la hoja se llama margen.
El limbo se une a la rama a través de una especie de rabito que se llama pecíolo, aunque hay algunas hojas que carecen de pecíolo
Existen diferentes formas de hojas según la forma de los nervios, según si tienen o no pecíolo, según la forma del limbo, según como es el margen, etc. Por ejemplo, llamamos hojas simples las que tienen un limbo sin partir o , aunque este limbo esté partido, las divisiones no llegan hasta el nervio principal. Son hojas compuestas aquellas en las que el limbo está dividido en fragmentos que llegan al nervio principal. Las hojas dentadas tienen el margen en forma de dientes mientras que las hojas enteras tienen el margen liso. 
Algunas hojas constituyen alimentos fundamentales para el hombre ya que son capaces de almacenar vitaminas, minerales, azúcar u otros nutrientes necesarios para la salud. Las hojas de las espinacas son un buen ejemplo de ello. Otras hojas se utilizan para dar sabor a los alimentos, como la hoja del laurel o para realizar preparados medicinales, como las hojas de la menta. 
Tipos de hojas
Típicamente, en la hoja se distinguen tres partes:
  • Limbo
  • Pecíolo
  • Vaina
El limbo o lámina, es la parte generalmente laminar plana, verde y ancha de la hoja; la cara superior se llama haz y la inferior envés; el haz suele ser de color oscuro y el envés algo más claro. La base del limbo se agranda a veces para albergar la yema, siempre presente en la axila de la hoja (yema axilar).
El limbo está surcado por una serie de líneas o cordones, perfectamente visibles al trasluz y salientes por el envés, llamadas nerviaciones, nervaduras o nervios. Son hacecillos de conductos vasculares prolongación y ramificación de los del pecíolo, cuya misión es aportar la savia bruta y retirar la elaborada.
En muchas hojas el nervio principal es central y finaliza en la punta del limbo (el ápice); del nervio principal suelen partir otros nervios secundarios. Mediante las nervaduras del limbo se puede realizar clasificaciones de las hojas (véase más abajo la clasificación de las hojas según su nervadura).El pecíolo o pedúnculo foliar, es el filamento, en general delgado y de color verde, que une el limbo al tallo. Su haz suele ser plano o cóncavo, mientras que su envés suele ser convexo. Sus tejidos vasculares, que comunican la hoja con el tallo, permiten la llegada del agua y los minerales absorbidos por la raíz. Tiene además la capacidad de orientar a la hoja en la dirección de la luz solar.
La vaina es la terminación ensanchada del pecíolo en el punto de unión con el tallo. Puede rodear al tallo muy claramente, como es el caso de la vaina cilíndrica de las gramíneas, o no existir. Algunas vainas llevan una prolongación membranosa en su parte superior llamada lígula. En la base del pecíolo, en ciertas especies, suelen encontrarse unas pequeñas laminillas o apéndices de distintos tipos, que pueden ser glandulares, espinosas, foliáceas o escamiformes, que reciben el nombre de estípulas. Las hojas sin pecíolo se llaman sentadas o sésiles. 
¿Qué son las flores?
Las flores son el órgano reproductor de las plantas. A partir de ellas, se producen los frutos y las semillas. Las semillas germinan y originan una nueva planta. Las flores están formadas por tres partes : cáliz, corola y pedúnculo floral
El cáliz es la parte verde de la flor. Tiene una consistencia más fuerte que la corola y a sus piezas les llamamos sépalos.
La corola está formada por los pétalos que son las piezas coloreadas de las flores. Su función es atraer a los animales portadores del polen. La colora es la parte de la flor que convierte a este órgano en algo tan atractivo para los insectos y el principal motivo por el cual cultivamos las flores de jardinería.
Dentro del cáliz , y rodeado por la corola, se encuentra el androceo o parte masculina de la flor. El androceo está constituido por los estambres que unas hojas que se han transformado con la finalidad de llevar el polen. Cada estambre consta de un filamento, que es el fragmento mas alargado; y la antera que es una " especie de bolsa ", donde están encerrados los granos de polen.
Rodeado por el androceo, se encuentra el gineceo. El gineceo es la parte femenina de la flor. Esta formado por uno o varios pistilos que son órganos parecidos a una botella. Cada pistilo consta de un estigma que está situado en la parte superior en forma de receptáculo para recoger el polen. El estilo que sirve de tubo conductor hacia el ovario El ovario que es la parte inferior más ampliada y donde se encuentran los óvulos que han de ser fecundados por el polen masculino.
La mayoría de las flores son hermafroditas, es decir poseen órganos masculinos y femeninos a la vez. Algunas flores solamente son masculinas y otras son femeninas. La mayoría de las plantas poseen flores hermafroditas. Hay plantas, como el roble, que posee flores masculinas y femeninas separadas en la misma planta , y otras plantas, como el acebo, que poseen flores masculinas en una planta y flores femeninas en otra planta de la misma especie.
El pedúnculo floral une la flor a la rama.
Para que una flor se transforme en frutos debe estar previamente polinizada. La polinización es el paso del polen desde el aparato masculino de las plantas al aparato femenino. Este proceso se puede realizar a través de los animales que transportan el polen de una planta a otra o a través del viento que arrastra el polen y lo deja caer en otra planta. Mas raramente se produce la autopolinización entre las flores de una misma planta o dentro de una misma flor.
¿ Qué son los frutos?
Después de la fecundación del óvulo femenino por el polen masculino, se produce la formación de los frutos. El fruto se origina especialmente por el engrosamiento de las paredes del ovario, aunque algunos frutos tienen otro origen ya que pueden proceden del engrosamiento del receptáculo floral o de otro lugar de la flor.
Algunos frutos tienen la consistencia blanda y se llaman frutos carnosos. Las frutas , como las manzanas o las peras, son ejemplos de frutos carnosos utilizados por el hombre para alimentarse. Otros frutos son muy duros al tacto y los llamamos frutos secos. Muchos frutos secos son muy ricos y muy nutritivos para el hombre que los utiliza en su dieta, como, por ejemplo, las nueces.

Tipos de frutos


¿Qué son las semillas?

Las semillas son los óvulos de la flor maduros. Las semillas se encuentran encerradas dentro de los frutos. Algunos frutos se abren espontáneamente para expulsar las semillas. Otros frutos permanecen cerrados y necesitan ser comidos por los animales o pudrirse para que sus semillas puedan salir al exterior. Si se dan las condiciones necesarias, las semillas germinan y producen nuevas plantas.
Todas las semillas son muy nutritivas. Hay algunas que son especialmente interesantes para el Hombre por sus propiedades alimentarias, ya que son muy ricas en proteínas, hidratos de carbono, minerales y vitaminas. Entre todas ella destacan las semillas de los frutos de las legumbres, como las alubias, los guisantes o las lentejas.

La fotosíntesis

Plantas que se reproducen a partir de otras plantas
Las semillas son fundamentales para la reproducción de las plantas pero... hay más forma de reproducir plantas.

¿Cómo crecen las plantas?
La absorción de sales minerales y agua por parte de la planta: Fotosíntesis.
Tipos de plantas


Existen diferentes clases de plantas, según el punto de vista que tengamos en cuenta.
Según el tamaño de las plantas estas pueden ser:
  • Árboles: Son aquellas plantas de tallo leñoso con una altura superior a cinco metros . En este caso los tallos se conocen con el nombre de troncos, los cuales no se ramifican hasta una altura considerable del suelo. 
Existen aproximadamente 60. 000 o 70.000 especies de árboles. Los cuales se pueden clasificar por infinidad de criterios desde su uso en jardinería hasta la utilidad de su madera. Sin embargo los dos criterios principales que se suelen seguir son:
  • La duración de las hojas: En este caso, distinguimos entre aquellos que mantienen las hojas durante todo el año  (perennifolios o árboles de hoja perenne) y aquellos que no mantienen las hojas durante todo el año ( caducifolios o árboles de hoja caduca)
  • Arbustos: Son aquellas plantas de tallo leñoso que miden entre uno y cinco metros de altura. La ramificación en este caso comienza a nivel de tierra.
  • Matas: Son aquellas plantas de tallo leñoso con una altura inferior al metro. 
  • Hierbas: Son aquellos tallos que no han desarrollado estructuras leñosas endurecidas. Su consistencia es blanda.



Laboratorio virtual: Entra en el laboratorio y demuestra lo que sabes
Todo lo que tienes que saber: Clasificación, nutrición y reproducción

Clasificación y características de las plantas: Enlace
Los órganos de las plantas: breve presentación
El gran papel del bosque: Recursos varios

Proceso de reproducción de las plantas: Enlace
Autoevaluación: test sobre las plantas (20 minutos máximo)
Autoevaluación: cuestionarios y palabras cruzadas
Test de evaluación: plantas con flores 
Cuestionario de Evaluación Somalo: Salesianos Los Boscos: 1º ESO

El planeta tierra

martes, 29 de marzo de 2011

En esta tema veremos
  • El origen de la tierra
  • La composición de la corteza terretres (páginas 90 a 98 de nuestro libro)
  • Los movimientos de la tierra (páginas 76 a 79)
  • La tierra en el universo (páginas 70 a 82)
  • La atmósfera (características, estructura y composición)
  • El tiempo atmosférico y el clima (páginas 134-140)



Origen y características de la tierra
El origen de La Tierra es el mismo que el del Sistema Solar. Lo que terminaría siendo el Sistema Solar inicialmente existió como una extensa mezcla de nubes de gas, rocas y polvo en rotación. Estaba compuesta por hidrógeno y helio surgidos en el Big Bang, así como por elementos más pesados producidos por supernovas. Hace unos 4.600 Ma, una estrella cercana se transformó en supernova y su explosión envió una onda de choque hasta la nebulosa protosolar incrementando su momento angular. A medida que la nebulosa empezó a incrementar su rotación, gravedad e inercia, se aplanó conformando un disco protoplanetario (orientado perpendicularmente al eje de rotación). La mayor parte de la masa se acumuló en su centro y empezó a calentarse, pero debido a las pequeñas perturbaciones del momento angular y a las colisiones de los numerosos escombros generados, empezaron a formarse protoplanetas. Aumentó su velocidad de giro y gravedad, originándose una enorme energía cinética en el centro. La imposibilidad de transmitir esta energía a cualquier otro proceso hizo que el centro del disco aumentara su temperatura. Por último, comenzó la fusión nuclear: de hidrógeno a helio, y al final, después de su contracción, se transformó en una estrella T Tauri: el Sol. La gravedad producida por la condensación de la materia –que previamente había sido capturada por la gravedad del propio Sol–, hizo que las partículas de polvo y el resto del disco protoplanetario empezaran a segmentarse en anillos. Los fragmentos más grandes colisionaron con otros, conformando otros de mayor tamaño que al final formarían los protoplanetas.[3] Dentro de este grupo había uno situado aproximadamente a 150 millones de km del centro: la Tierra. El viento solar de la recién formada estrella arrastró la mayoría de las partículas que tenía el disco, condensándolas en cuerpos mayores.



La atmósfera terrestre 
La atmósfera es la capa de gases que rodea la Tierra y que, gracias a su baja densidad, puede desplazarse fácilmente sobre su superficie. Como ocurre con todos los gases, el aire modifica su densidad en función de la temperatura y esto hace que pueda ascender y descender.
Dado que hay constantes variaciones de temperatura entre unos puntos y otros de la Tierra, el aire está en contínuo movimiento. Su ascenso o descenso no se efectua en línea recta, y esto origina los vientos. Además, el vapor de agua que contiene se convierte en líquido (se condensa) al ascender a capas más frias, por lo que se producen las precipitaciones.
En la Tierra, la actual mezcla de gases se ha desarrollado a lo largo de 4.500 millones de años. La atmósfera primigenia debió estar compuesta únicamente de emanaciones volcánicas, es decir, una mezcla de vapor de agua, dióxido de carbono, dióxido de azufre y nitrógeno, sin rastro apenas de oxígeno. A lo largo de este tiempo, diversos procesos físicos, químicos y biológicos transformaron esa atmósfera primitiva hasta dejarla tal como ahora la conocemos.
Además de proteger el planeta y proporcionar los gases que necesitan los seres vivos, la atmósfera determina el tiempo y el clima.
La capa exterior de la Tierra es gaseosa, de composición y densidad muy distintas de las capas sólidas y líquidas que tiene debajo. Pero es la zona en la que se desarrolla la vida y, además, tiene una importancia trascendental en los procesos de erosión que son los que han formado el paisaje actual.
Los cambios que se producen el la atmósfera contribuyen decisivamente en los procesos de formación y sustento de los seres vivos y determinan el clima.
Composición del aire
Los gases fundamentales que forman la atmósfera son: 
Nitrógeno (78.084%), 
Oxígeno (20.946%), 
Argón (0.934%) y
Dióxido de Carbono (0.033%). 
Otros gases de interés presentes en la atmósfera son el vapor de agua, el ozono y diferentes óxidos. 
También hay partículas de polvo en suspensión como, por ejemplo, partículas inorgánicas, pequeños organismos o restos de ellos y sal marina. Muchas veces estas partículas pueden servir de núcleos de condensación en la formación de nieblas muy contaminantes.
Los volcanes y la actividad humana son responsables de la emisión a la atmósfera de diferentes gases y partículas contaminantes que tienen una gran influencia en los cambios climáticos y en el funcionamiento de los ecosistemas.

El aire se encuentra concentrado cerca de la superficie, comprimido por la atracción de la gravedad y, conforme aumenta la altura, la densidad de la atmósfera disminuye con gran rapidez. 
En los 5,5 kilómetros más cercanos a la superficie se encuentra la mitad de la masa total y antes de los 15 kilómetros de altura está el 95% de toda la materia atmosférica.

La mezcla de gases que llamamos aire mantiene la proporción de sus distintos componentes casi invariable hasta los 80 km, aunque cada vez más enrarecido (menos denso) conforme vamos ascendiendo. A partir de los 80 km la composición se hace más variable.


Formación de la atmósfera
 
La mezcla de gases que forma el aire actual se ha desarrollado a lo largo de 4.500 millones de años. 
La atmósfera primigenia debió estar compuesta únicamente de emanaciones volcánicas, es decir, vapor de agua, dióxido de carbono, dióxido de azufre y nitrógeno, sin rastro apenas de oxígeno.
Para lograr la transformación han tenido que desarrollarse una serie de procesos. Uno de ellos fue la condensación. Al enfriarse, la mayor parte del vapor de agua de origen volcánico se condensó, dando lugar a los antiguos océanos. También se produjeron reacciones químicas. Parte del dióxido de carbono debió reaccionar con las rocas de la corteza terrestre para formar carbonatos, algunos de los cuales se disolverían en los nuevos océanos.
Más tarde, cuando evolucionó la vida primitiva capaz de realizar la fotosíntesis, empezó a producir oxígeno. 
Hace unos 570 millones de años, el contenido en oxígeno de la atmósfera y los océanos aumentó lo bastante como para permitir la existencia de la vida marina. Más tarde, hace unos 400 millones de años, la atmósfera contenía el oxígeno suficiente para permitir la evolución de animales terrestres capaces de respirar aire.

La atmósfera se divide en diversas capas:



  • La troposfera o tropósfera es la capa de la atmósfera que está en contacto con la superficie de la Tierra.
    Tiene alrededor de 17 km de espesor en el ecuador terrestre, y en ella ocurren todos los fenómenos meteorológicos que influyen en los seres vivos, como los vientos, la lluvia y los huracanes. Además, concentra la mayor parte del oxígeno y del vapor de agua. En particular este último actúa como un regulador térmico del planeta; sin él, las diferencias térmicas entre el día y la noche serían tan grandes que no podríamos sobrevivir. Es de vital importancia para los seres vivos. La tropósfera es una de las capas más finas del conjunto de las capas de la atmósfera.
    La temperatura en la troposfera desciende a razón de aproximadamente 6,5 ºC por kilómetro de altura.
    La estratosfera o estratósfera es una de las capas más importantes de la atmósfera, esta se sitúa entre la troposfera y la mesosfera, y se extiende desde unos 11 hasta unos 50 km de la superficie. La temperatura aumenta progresivamente desde los -55 °C de la tropopausa hasta alcanzar los 0 °C de la estratopausa, aunque según algunos autores puede alcanzar incluso los 17 °C o más. Es decir, en esta capa la temperatura aumenta con la altitud, al contrario de lo que ocurre en las capas superior e inferior. Esto es debido principalmente a la absorción de las moléculas de ozono que absorben radiación electromagnética en la región del ultravioleta.
    En la parte baja de la estratósfera la temperatura es relativamente estable, y en toda la capa hay muy poca humedad.
    La estratósfera es una región en donde se producen diferentes procesos radiactivos, dinámicos y químicos. La mezcla horizontal de los componentes gaseosos se produce mucho más rápidamente que la mezcla vertical.
    A una altura aproximadamente de 2.5 veces la altura del Everest y unas 50 veces el Empire State de New York sólo algunos aviones como el Mig-31 ruso pueden volar. Cerca del final de la Estratósfera se encuentra la capa de ozono que absorbe la mayoría de los rayos ultravioleta del Sol.
    La mesosfera o mesósfera es la parte de la atmósfera situada por encima de la estratosfera y por debajo de la termosfera. En la mesosfera la temperatura va disminuyendo a medida que se aumenta la altura, hasta llegar a unos -80 °C a los 80 kilómetros aproximadamente. Se extiende desde la estratopausa (zona de contacto entre la estratosfera y la mesosfera) hasta una altura de unos 80 km donde la temperatura vuelve a descender hasta unos -70 °C u -80 °C.
    La mesosfera es la tercera capa (3º) de la atmósfera de la Tierra. La temperatura disminuye a medida que se sube, como sucede en la troposfera. Puede llegar a ser hasta de -90° C. Es la zona más fría de la atmósfera.
    La mesosfera, que se extiende entre los 50 y 80 km de altura, contiene sólo cerca del 0,1% de la masa total del aire. Es importante por la ionización y las reacciones químicas que ocurren en ella. La baja densidad del aire en la mesosfera determinan la formación de turbulencias y ondas atmosféricas que actúan a escalas espaciales y temporales muy grandes. La mesosfera es la región donde las naves espaciales que vuelven a la Tierra empiezan a notar la estructura de los vientos de fondo, y no sólo el freno aerodinámico. También en esta capa se observan las estrellas fugaces que son meteoroides que se han desintegrado en la termosfera.
    La mesosfera forma parte de la atmósfera terrestre, está entre la estratósfera y la ionosfera, en ella se encuentran meteoritos.

    La termosfera o termósfera es la capa de la atmósfera terrestre que se encuentra entre la mesosfera y la exosfera. Dentro de esta capa, la radiación ultravioleta, pero sobre todo los rayos gamma y rayos X provenientes del Sol, provocan la ionización de átomos y moléculas. En dicho proceso los gases que la componen elevan su temperatura varios cientos de grados, de ahí su nombre. Es la capa de la atmósfera en la que operan los transbordadores espaciales.
    Se extiende desde los 80 km a los 600 km, aproximadamente. En esta capa la temperatura se eleva continuamente hasta más allá de los 1000 °C. Está constituida por gran cantidad de partículas con carga eléctrica.

    La exosfera o exósfera es la capa de la atmósfera terrestre en la que los gases poco a poco se dispersan hasta que la composición es similar a la del espacio exterior. Es la última capa de la atmósfera, se localiza por encima de la termosfera, aproximadamente a unos 600 km de altitud, en contacto con el espacio exterior, donde existe prácticamente el vacío. Es la región atmosférica más distante de la superficie terrestre. En esta capa la temperatura no varía y el aire pierde sus cualidades físico–químicas.
    Su límite inferior se localiza a una altitud generalmente de entre 600 y 700 km, aproximadamente. Su límite con el espacio llega en promedio a los 10.000 km por lo que la exosfera está contenida en la magnetosfera (500-60.000 km), que representa el campo magnético de la Tierra. En esa región, hay un alto contenido de polvo cósmico que cae sobre la Tierra y que hace aumentar su peso en unas 20.000 toneladas.[cita requerida] Es la zona de tránsito entre la atmósfera terrestre y el espacio interplanetario y en ella se pueden encontrar satélites meteorológicos de órbita polar.
    En la exosfera, el 'concepto popular' de temperatura desaparece, ya que la densidad del aire es casi despreciable; además contiene un flujo o bien llamado plasma, que es el que desde el exterior se le ve como los Cinturones de Van Allen. Aquí es el único lugar donde los gases pueden escapar ya que la influencia de la fuerza de la gravedad no es tan grande. En la exosfera también se encuentran los satélites artificiales.
    Está constituida por materia plasmática. En ella la ionización de las moléculas determina que la atracción del campo magnético terrestre sea mayor que la del gravitatorio (de ahí que también se la denomina magnetosfera).
    Por lo tanto, las moléculas de los gases más ligeros poseen una velocidad media que les permite escapar hacia el espacio interplanetario sin que la fuerza gravitatoria de la Tierra sea suficiente para retenerlas.
    Los gases que así se difunden en el vacío representan una pequeñísima parte de la atmósfera terrestre.
     
El calor
La energía del Sol que atraviesa la atmósfera de la Tierra, al calienta. Pero al llegar a la superficie terrestre se puede encontrar con agua o con roca, según caiga sobre el mar o un continente. La roca tiene tendencia a calenterse y enfriarse más rápidamente que el agua. Por tanto, los continentes se enfrían y calientat antes que los océanos, creando zonas con distintas temperaturas.
La cantidad de energía que recibe cada porción de la Tierra depende también de la inclinación de los rayos solares, cuanto más verticales, más energía. Por esto, las regiones cercanas a los polos son mucho más frias que las que se encuentran cerca del ecuador. Además, en el hemisferio norte la proporción de tierras emergidas es mucho mayor que en el sur.

Latitud y altitud

La latitud determina la posición de un punto determinado de la Tierra con relación al ecuador. Se mide dividiendo el hipotético cuadrante terrestre en 90 paralelos, cada uno de los cuales corresponde a un grado del ángulo recto. El ecuador tiene latitud 0º y los polos, 90º. Como se ha dicho, las latitudes altas reciben mucho menos calor que las bajas.
La altitud se refiere a la altura de un punto determinado en relación al nivel del mar. A medida que aumenta la altitud, disminuye la densidad de la atmósfera y, por tanto, su capacidad de absorción del calor. Por esto, cuanto más alto esté un lugar, menor temperatura tendrá.

El aire en movimiento

A causa de las diferencias entre agua y tierra, de la latitud y de la altitud, se crean zonas en las que el aire más caliente y ligero tiende a ascender, mientras que el aire más pesado y frio desciende. Estas diferencias de presión son las causantes de los vientos.
Pero se ha observado que la atmósfera sigue un movimiento más o menos regular llamado circulación general, debido a que hay zonas del planeta con unas condiciones características. A lo largo del ecuador se extiende una zona de bajas presiones, después siguen dos zonas subtropicales con presiones altas, dos zonas templadas de baja presión y, finalmente, las zonas polares, de nuevo, con altas presiones. Las masas de aire se mueven entre estas zonas con presiones distintas.
 
La rotación de la Tierra
La tierra, al girar sobre su eje, produce fuerzas centrífugas y de inercia que arrastran el aire. Además, al estar en contacto con la superficie, se originan también fuerzas de rozamiento. Todas estas fuerzas tienen una enorme influenxia sobre la forma en que se mueve el aire.
Cuando por diferencias de presión el aire se pone en movimiento, la rotación de la Tierra lo desvía según la dirección de marcha: hacia la derecha en el hemisferio norte y hacia la izquierda en el hemisferio sur. Todo este complejo sistema de fuerzas hace que el viento se desplace describiendo ámplios círculos o espirales.
Se llama fuerza de Coriolis a la inercia que actua sobre un cuerpo o masa de aire a causa de la rotación de la Tierra. Por ejemplo, los vientos alisios y los ponientes se originan a causa de la fuerza de Coriolis.

Contaminación atmosférica
Los astronautas vuelven de sus viajes con una nueva mentalidad que les hace sentir más respeto por la Tierra y entender mejor la necesidad de cuidarla. Desde el espacio no se ven las fronteras y, mucho menos, los intereses económicos, pero sí algunos de sus devastadores efectos, como la contaminación de la atmósfera.
El 85% del aire está cerca de la Tierra, en la troposfera, una finísima capa de sólo 15 Km. Las capas más elevadas de la atmosfera tienen poco aire, pero nos protegen de los rayos ultravioletas (capa de ozono) y de los meteoritos (ionosfera). Los gases que hemos vertido a la atmosfera han dejado la Tierra en un estado lamentable.

Las fotos que hicieron los primeros astronautas son mucho más claras que las actuales, a pesar de que ahora tenemos aparatos más sofisticados. Los humanos somos capaces de destruir en poco tiempo lo que a la naturaleza le ha costado miles de años crear.
Cada año, los países industriales generan millones de toneladas de contaminantes. Los contaminantes atmosféricos más frecuentes y más ampliamente dispersos son el monóxido de carbono, el dióxido de azufre, los óxidos de nitrógeno, el ozono, el dióxido de carbono o las partículas en suspensión.
El nivel suele expresarse en términos de concentración atmosférica (microgramos de contaminantes por metro cúbico de aire) o, en el caso de los gases, en partes por millón, es decir, el número de moléculas de contaminantes por millón de moléculas de aire.
Muchos contaminantes proceden de fuentes fácilmente identificables; el dióxido de azufre, por ejemplo, procede de las centrales energéticas que queman carbón o petróleo. Otros se forman por la acción de la luz solar sobre materiales reactivos previamente emitidos a la atmósfera (los llamados precursores). Por ejemplo, el ozono, un peligroso contaminante que forma parte del smog, se produce por la interacción de hidrocarburos y óxidos de nitrógeno bajo la influencia de la luz solar. El ozono ha producido también graves daños en las cosechas.

Por otra parte, el descubrimiento en la década de 1980 de que algunos contaminantes atmosféricos, como los clorofluorocarbonos (CFC), están produciendo una disminución de la capa de ozono protectora del planeta ha conducido a una supresión paulatina de estos productos.

La contaminación atmosférica es uno de los problemas medioambientales que se extiende con mayor rapidez ya que las corrientes atmosféricas pueden transportar el aire contaminado a todos los rincones del globo. Los gases que se liberan en la atmósfera producen efectos nocivos sobre los patrones atmosféricos y afectan a la salud de las personas, animales y plantas.

Aquí tienes una apuntes muy básicos para estudiar  y un cuestionario de repaso

Terremotos

lunes, 14 de marzo de 2011

¿Qué es un terremoto? ¿Cómo se producen? ¿Cuál es la anatomía de un terremoto? ¿Qué es y cómo funciona un sismógrafo? ¿Cuáles son los grados de intensidad de un terremoto?

Antes de seguir vamos a ver cuáles son los efectos que tiene un terremoto. En lugar de ver un documental, vamos a ver hechos reales: lo ocurrido en Japón el 11 de marzo de 2011.
Tras el mapa de Japón tienes una serie de imágenes que te muestran el antes y el después del terremoto. Pincha en el centro de las imágenes que ofrece The New York Time y desplaza el ratón.

Los reportajes que tienes a continuación te dan más detalles de lo que ha pasado.

En las noticias se usan palabras como terremoto, maremoto, sunami, epicentro, escala de Richter, etc.  El objetivo de este tema es que comprendas qué es un terremoto, cómo se produce, su efectos, etc. En pocas palabras: imagina que alguien te pide que le expliques el contenido del siguiente video:


Para conocer qué es un terremoto, cómo se forma, et. necesitas conocer unas cuestiones previas:
La tectónica de placas  es una teoría geológica que explica la forma en que está estructurada la litosfera (la porción externa más fría y rígida de la Tierra). La teoría da una explicación a las placas tectónicas que forman la superficie de la Tierra y a los desplazamientos que se observan entre ellas en su movimiento sobre el manto terrestre fluido, sus direcciones e interacciones. También explica la formación de las cadenas montañosas (orogénesis). Así mismo, da una explicación satisfactoria de por qué los terremotos y los volcanes se concentran en regiones concretas del planeta (como el cinturón de fuego del Pacífico) o de por qué las grandes fosas submarinas están junto a islas y continentes y no en el centro del océano.
Los siguientes enlaces te ofrecen una presentación interactiva de todo esto.
Tectónica de placas
Tectónica de placas (2)
La estructura de la tierra
La estructura de la tierra (2)
Si pinchas sobre el siguinte dibujo podrás completar y ampliar lo que ya sabes.




Tras el siguiente dibujo tienes información que te ayudará a apliar tus conocimientos sobre el tema.


 


 
Los bolcanes
Para ampliar tu conocimiento sobre las rocas, pincha en el siguiente enlace sobre rocas ígneas